m-Partition Boards and Poly-Stirling Numbers

نویسنده

  • Brian K. Miceli
چکیده

We define a generalization of the Stirling numbers of the first and second kinds and develop a new rook theory model to give combinatorial interpretations to these numbers. These rook-theoretic interpretations are used to give a direct combinatorial proof that two associated matrices are inverses of each other. We also give combinatorial interpretations of the numbers in terms of certain collections of permutations and in terms of certain collections of set partitions. In addition, many other well-known identities involving Stirling numbers are generalized using this new model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two q-Analogues of Poly-Stirling Numbers

We develop two q-analogues of the previously defined poly-Stirling numbers of the first and second kinds. We also develop the corresponding q-rook theory models to give combinatorial interpretations to these numbers.

متن کامل

MIXED r-STIRLING NUMBERS OF THE SECOND KIND

The Stirling number of the second kind {k} counts the number of ways to partition a set of n labeled balls into k non-empty unlabeled cells. We extend this problem and give a new statement of the r-Stirling numbers of the second kind and r-Bell numbers. We also introduce the r-mixed Stirling number of the second kind and r-mixed Bell numbers. As an application of our results we obtain a formula...

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks

This paper studies the generalizations of the Stirling numbers of both kinds and the Lah numbers in association with the normal ordering problem in the Weyl algebra W = 〈x,D|Dx − xD = 1〉. Any word ω ∈ W with m x’s and n D’s can be expressed in the normally ordered form ω = xm−n ∑ k>0 { ω k } xkDk, where { ω k } is known as the Stirling number of the second kind for the word ω. This study consid...

متن کامل

A p, q-analogue of a Formula of Frobenius

Garsia and Remmel (JCT. A 41 (1986), 246-275) used rook configurations to give a combinatorial interpretation to the q-analogue of a formula of Frobenius relating the Stirling numbers of the second kind to the Eulerian polynomials. Later, Remmel and Wachs defined generalized p, q-Stirling numbers of the first and second kind in terms of rook placements. Additionally, they extended their definit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010